Axotomized mouse retinal ganglion cells containing melanopsin show enhanced survival, but not enhanced axon regrowth into a peripheral nerve graft
نویسندگان
چکیده
Melanopsin is found in only approximately 2% of mouse retinal ganglion cells (RGCs), making these RGCs uniquely and directly photosensitive. Given that the majority of RGCs die after axotomy and that grafting of a peripheral nerve to the eye provides a permissive environment for axon regrowth, the present study examined the survival and axonal regrowth of melanopsin-containing RGCs in mice. One month after optic nerve transection and grafting, RGCs with regrown axons were labeled from the grafts and retinae were processed to visualize melanopsin and TUJ1. Melanopsin-positive and negative RGCs were counted and compared to axotomized RGCs from ungrafted eyes and uninjured RGCs. Melanopsin-positive RGCs showed a 3-fold increase in survival rate compared to non-melanopsin RGCs. Despite this enhanced survival, melanopsin-containing RGCs did not show increased axon regrowth into nerve grafts.
منابع مشابه
Influences of peripheral nerve grafts on the survival and regrowth of axotomized retinal ganglion cells in adult rats.
To investigate the role of extrinsic influences on the survival and growth of axotomized retinal ganglion cells (RGCs) in the mature mammalian CNS, both optic nerves (ONs) of adult rats were transected intraorbitally and, on one side, replaced by an autologous segment of peripheral nerve (PN) that had been left unconnected distally. The survival of RGCs and the regrowth of their cut axons into ...
متن کاملBDNF increases the number of axotomized rat retinal ganglion cells expressing GAP-43, L1, and TAG-1 mRNA--a supportive role for nitric oxide?
The death of neurons and the limited ability to activate growth-associated genes prevent the restoration of lesioned fiber tracts in the adult mammalian CNS. Here, we characterized the effects of the survival-promoting neurotrophin brain-derived neurotrophic factor (BDNF) on mRNA expression of GAP-43, L1, TAG-1, and SC-1 in axotomized and regenerating rat retinal ganglion cells (RGCs). BDNF led...
متن کاملIntraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons.
In vitro, cyclic AMP (cAMP) elevation alters neuronal responsiveness to diffusible growth factors and myelin-associated inhibitory molecules. Here we used an established in vivo model of adult central nervous system injury to investigate the effects of elevated cAMP on neuronal survival and axonal regeneration. We studied the effects of intraocular injections of neurotrophic factors and/or a cA...
متن کاملNeural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study
Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose...
متن کاملRegrowth and connectivity of injured central nervous system axons in adult rodents.
The capacity of injured nerve cells to regrow and form terminal connections in the CNS of adult mammals was investigated in axotomized retinal ganglion cells (RGCs) of rodents whose optic nerves were substituted by an autologous segment of peripheral nerve. While many RGCs died after axotomy approximately 20% of the surviving RGCs regenerated axons several cm in length. Some of the regenerated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Vision Research
دوره 44 شماره
صفحات -
تاریخ انتشار 2004